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Treatment of [CpFe(CO)2I] with terminal alkynes in the presence of catalytic amounts of dichlorobis(tri-
phenylphosphine)palladium and copper iodide in aliphatic amine/THF results in Sonogashira-type car-
bon–iron bond formation to yield [CpFe(CO)2(C„CR)] in good yields.
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Dicarbonylcyclopentadienylorganoiron complexes [CpFe(-
CO)2R] have been attracting considerable attention in the field of
coordination chemistry.1 Among them, the corresponding (1-alky-
nyl)iron complexes [CpFe(CO)2(C„CR)] are interesting not only as
fundamental organometallic compounds2 but also as potentially
useful precursors for molecular electronic devices.3

The synthesis of the (1-alkynyl)iron complexes often employs
the reactions of [CpFe(CO)2X] (X = halogen) with lithium or magne-
sium acetylides, which lack generality and functional group com-
patibility.4 Although palladium-catalyzed Migita–Kosugi–Stille-
type reactions of [CpFe(CO)2I] with (1-alkynyl)stannanes offer an
alternative route,5 preparation of the tin reagents and removal of
tin impurities would be troublesome. Copper-catalyzed reactions
of [CpFe(CO)2X] (X = Cl or Br) with terminal acetylenes providing
[CpFe(CO)2(C„CR)] are most useful at present due to their reason-
able scope and efficiency.4d,6 However, the yields heavily depended
on the alkynes used and [CpFe(CO)2I] would not react under the
copper-catalyzed conditions. More efficient and versatile methods
for the synthesis of [CpFe(CO)2(C„CR)] are hence awaited.7,8

Recently, we have developed easy and efficient methods for the
synthesis of [CpFe(CO)2Ar], the palladium-catalyzed Kumada–Ta-
mao–Corriu-,9a Negishi-,9b and Suzuki–Miyaura-type9b reactions
of [CpFe(CO)2I] with arylmetal reagents. Here we report the syn-
thesis of [CpFe(CO)2(C„CR)] by palladium-catalyzed Sonogash-
ira-type carbon–iron bond formation.10

Treatment of [CpFe(CO)2I] with phenylacetylene in the presence
of catalytic amounts of CuI and [PdCl2(PPh3)2] in a triethylamine/
THF mixed solvent afforded [CpFe(CO)2(C„CPh)]11 (1a) in 60%
yield (Eq. 1). The combination of CuI and the palladium catalyst
is important. The reaction was sluggish when copper iodide (11%
yield) or the palladium complex (18%) was omitted. After screening
ll rights reserved.
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reaction conditions, we found that diisopropylamine is the most
effective base (Eq. 2). The reaction in a diisopropylamine/THF
mixed solvent at 25 �C for 30 min afforded 1a in 81% yield, albeit
with a smaller amount, 2.5 mol %, of the palladium catalyst.12
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The scope of alkynes is summarized in Table 1. A methyl or
methoxy group at the 4 position of the arylacetylene had little
influence on the reaction (entries 1 and 2). The steric effect of a
2-methyl group was also negligible (entry 3). On the other hand,
electron-withdrawing groups retarded the reaction. The reaction
with 4-fluorophenylacetylene required a higher temperature and
a longer reaction time to attain a satisfactory result (entry 4). More
disappointingly, very inefficient conversions were observed in the
reactions of 4-trifluoromethyl- and 4-cyanophenylacetylene (en-
tries 5 and 6).

We thus reexamined the conditions for the reactions with elec-
tron-deficient arylacetylenes. To our delight, ethyldiisopropyl-
amine proved to be effective. In addition, the amounts of
[PdCl2(PPh3)2] and CuI were changed from 2.5 mol % and 5 mol %
to 5 mol % and 2.5 mol %, respectively. For instance, treatment of
[CpFe(CO)2I] with 4-trifluoromethylphenylacetylene under the
reoptimized conditions (Conditions B) furnished the corresponding
alkynyliron 1f in 86% yield (entry 7). Cyano or halo-substituted
arylacetylenes were also transformed efficiently (entries 8–11).
Iron complex 1k bearing a carbonyl group was obtained in high
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Scheme 1. Chemoselective reaction of 4-ethynylbenzyl alcohol.

Table 1
Scope of alkynes

Fe IOC
OC

cat. PdCl2(PPh3)2
cat. CuI
1.5 equiv H C C R

amine/THF = 1:2
25 C, 30 min

Fe COC
OC 1

C R

°

Entry R Conditionsa 1 Yield (%)

1 4-MeC6H4 A 1b 85
2 4-MeOC6H4 A 1c 76
3 2-MeC6H4 A 1d 88
4 4-FC6H4 A 1e 77b

5 4-CF3C6H4 A 1f 13
6 4-NCC6H4 A 1g 23
7 4-CF3C6H4 B 1f 86
8 4-NCC6H4 B 1g 84
9 2-NCC6H4 B 1h 91

10 4-ClC6H4 B 1i 75
11 4-BrC6H4 B 1j 74
12 4-MeOC(@O)C6H4 B 1k 85c

13 nC4H9 A 1l 34c

14 tC4H9 A 1m 66c

15 Me3Si A 1n 73c

a Conditions A: 2.5 mol % [PdCl2(PPh3)2], 5 mol % CuI, iPr2NH; conditions B:
5 mol % [PdCl2(PPh3)2], 2.5 mol % CuI, iPr2EtN.

b At 50 �C for 1 h.
c Based on NMR analysis of a crude mixture.
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yield (entry 12) although 1k was unstable under air and decom-
posed during chromatographic purification on silica gel.13

Although the reaction of [CpFe(CO)2I] with aliphatic terminal
acetylene or trimethylsilylacetylene proceeded under Conditions
A (entries 13–15), products 1l–n were not isolated efficiently in
our hands due to the instability under air.13

The Sonogashira-type reaction is so chemoselective that 4-ethy-
nylbenzyl alcohol underwent smooth carbon–iron bond formation
without affecting the hydroxy group (Scheme 1). To verify that the
hydroxy group remained intact, the hydroxy group of 1o was acet-
ylated to yield 1p. The benzylic protons of the starting alcohol and
1o appeared around 4.6–4.7 ppm in 1H NMR analysis, whereas
those of 1p appeared at a clearly different chemical shift of
5.04 ppm. These NMR analyses strongly support the inertness of
the hydroxy group under the palladium catalysis.

The reaction of [CpFe(CO)2I] with 1,4-diethynylbenzene affor-
ded dinuclear iron complex 1q in high yield (Eq. 3), highlighting
the efficiency of the carbon–iron bond formation.
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Not only iodoiron complexes but also similar molybdenum and
tungsten complexes underwent alkynylation under Conditions A
(Eq. 4).
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The Sonogashira-type reaction was applicable to the alkynyla-
tion of [Cp*Fe(CO)2I] (Eq. 5). Due to the more bulky and electron-
donating Cp* group, [Cp*Fe(CO)2I] was less reactive. The reaction
required larger catalyst loadings and a longer reaction time. Tetra-
butylammonium fluoride (TBAF) served as a base more efficiently
than ethyldiisopropylamine and diisopropylamine. It is worth
noting that the precedented copper-catalyzed alkynylation of
[Cp*Fe(CO)2Br] is low-yielding.6b
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ð5Þ

The TBAF-mediated alkynylation conditions were also effective
for the alkynylation with diynylsilane 3, which represents a model
synthesis of oligoynylirons as molecular electronic devices3 (Eq. 6).
Diynylsilane 3 reacted with [CpFe(CO)2I] in the presence of TBAF
and the [PdCl2(PPh3)2]/CuI catalyst to yield diynyliron complex
1r in 80% yield.14 It is worth noting that 3 is readily available15

and stable whereas phenylbutadiyne is difficult to synthesize and
to handle.16
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In summary, we have applied an important carbon–carbon bond
forming reaction, the Sonogashira reaction, to the construction of
carbon–iron bonds. We have thus developed a method for the syn-
thesis of 1-alkynyliron complexes [CpFe(CO)2(C„CR)]. The iron
complexes will find many applications in advanced material sci-
ences as well as coordination chemistry and organic synthesis.
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